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Abstract

In this paper we first present a uniformity property that
characterises optimal channel assignments for networks ar-
ranged as cellular or square grids. Then, we present op-
timal channel assignments for cellular and square grids;
these assignments exhibit a high value for Æ1 — the separa-
tion between channels assigned to adjacent stations. Based
on empirical evidence, we conjecture that the value our as-
signments exhibit is an upper bound on Æ1.

1 Introduction

The enormous growth of wireless networks has made
the efficient use of the scarce radio spectrum important. A
“Frequency Assignment Problem” (FAP) models the task of
assigning frequencies (channels) from a radio spectrum to
a set of transmitters and receivers, satisfying certain con-
straints [6]. The main difficulty in an efficient use of the ra-
dio spectrum is the interference caused by unconstrained si-
multaneous transmissions. Interferences can be eliminated
(or at least reduced) by means of suitable channel assign-
ment techniques, which partition the given radio spectrum
into a set of disjoint channels that can be used simultane-
ously by the stations while maintaining acceptable radio
signals. Since radio signals get attenuated over distance,
two stations in a network can use the same channel without
interferences provided the stations are spaced sufficiently
apart. Stations that use the same channel are called co-
channel stations. The minimum distance at which channels
can be reused with no interferences is called the co-channel
reuse distance (or simply reuse distance) and is denoted by
�.

In a dense network – a network where there are a large
number of transmitters and receivers in a small area – in-
terference is more likely. Thus, reuse distance needs to
be high in such networks. Moreover, channels assigned to

nearby stations must be separated in value by at least a gap
which is inversely proportional to the distance between the
two stations. A minimum channel separation Æ i is required
between channels assigned to stations at distance i, with
i < �, such that Æi decreases when i increases [5]. The pur-
pose of channel assignment algorithms is to assign channels
to transmitters in such a way that (1) the co-channel reuse
distance and the channel separation constraints are satisfied,
and (2) the span of the assignment, defined to be the differ-
ence between the highest and the lowest channels assigned,
is as small as possible [1].

This paper has two significant contributions:

1. A characterisation of optimal colourings for cellular
and square grids. We essentially show a nice unifor-
mity across the grid that every optimal colouring must
satisfy. (See Section 2.)

2. We present optimal channel assignments for cellular
and square grids where the channel separation between
adjacent stations is large. Empirical evidence suggests
that the separation that our assignments realise is an
upper bound on the separation that any optimal chan-
nel assignment scheme for these grids can achieve.
(See Section 3.)

2 A Characterisation of Optimal Colourings

We first introduce square grids and cellular grids. We ex-
plain tilings in both grids, and define some notation. Then
we present our characterisation of optimal colourings in cel-
lular and square grids.

Given a graph, G, for a network, and a reuse distance �,
consider the augmented graph obtained from G by adding
edges between all those pairs of vertices that are at a dis-
tance of at most � � 1. Clearly, then, the size (number
of vertices) of any clique in this augmented graph places
a lower bound on an L(1; ~1��1) colouring (and hence, on
an L(Æ1; : : : ; Æ��1) colouring) for G; the best such lower
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bound is given by the size of a maximum clique in the aug-
mented graph.

In sections 2.1 and 2.2 below we treat cellular and square
grids, respectively, as graphs. Given �, a tile is a clique
in the augmented graph as described above. In each case,
we will denote the number of vertices in a tile by c(�) (to
avoid notational clutter, we do not include the graph as a
parameter to c).

2.1 Cellular Grids

Lemma 1. The number of vertices in a tile corresponding
to reuse distance �, denoted by c(�) is given by c(�) =
(3�2 + (� mod 2))=4.

For a particular �, tiles are hexagons and they tile the
entire gridA2. The hexagons are regular with sides of d �

2
e

vertices for � odd. In case of � even, alternate sides of the
hexagon are equal, consecutive sides having �

2
and d�+1

2
e

vertices respectively.

(0,0,0)

i(0,1,-1)

j(1,-1,0)

Figure 1. Basis vectors in A2

Figure 1 shows the coordinate system we use for repre-
senting vertices inA2 where (0; 1;�1) and (1;�1; 0) indi-
cate the basis vectors i and j. We place a hexagon with one
of the vertices at (0; 0) and call it a canonical tile.

In the table below, we list the coordinates of the corners
of a hexagon in clockwise order, for various values of �.

� mod 4 = 0 � mod 4 = 2 � mod 4 = 1; 3
(0; 0) (0; 0) (0; 0)

(�
2
� 1; 0) (�

2
; 0) (b�

2
c; 0)

(� � 1; �
2
) (� � 1; �

2
� 1) (� � 1; b�

2
c)

(� � 1; � � 1) (� � 1; � � 1) (� � 1; � � 1)
(�
2
� 1; � � 1) (�

2
; � � 1) (b�

2
c; � � 1)

(0; �
2
) (0; �

2
� 1) (0; b�

2
c)

Hexagons with origin other than (0; 0) will be re-
ferred to as tiles. The six hexagons with their ori-
gins at (�� ;�d�

2
e), (�d�

2
e; b�

2
c), (b�

2
c; �), (� ;d�

2
e),

(d�
2
e;�b�

2
c) and (�b�

2
c;��) tile A2 around the canoni-

cal one. The tiling is shown for � = 4 and � = 5 in Figure
2. The points marked in the figure correspond to the origins
of the tiles. The canonical tile is marked as H0 and the tiles
surrounding it are marked H1 to H6. We name the edges of
the tiles as follows: the edge of tile H0 which is adjacent to
the tile Hi will be denoted by ti.

σ=6 σ=5

H0

H1 H2

H3
H4

H0

H1 H2

H3H4

Y X

σ=4 σ=5

H0

H1

H2

H3

H4
H5

H6

H0
H1

H2
H3

H4
H5

H6

Cellular Grid

Square Grid

Figure 2. Tiling of A2 and Z2

2.2 Square Grids

Lemma 2. The number of vertices in a tile corresponding to
reuse distance �, denoted by c(�) is given by c(�) = d �2

2
e.

For a particular �, tiles are squares with their diagonals
along the X and Y axes and every side containing d �

2
e ver-

tices. They tile the entire grid Z2. In the case of odd �,
every corner of a tile corresponds to a vertex whereas in
the case of even �, opposite corners along the X direction
correspond to vertices.

We place a square with one of its vertices at (0; 0) and
call it a canonical tile. Squares with origins other than
(0; 0) will just be referred to as tiles. The four squares
with origins at (�b �

2
c; d�

2
e), (d�

2
e; b�

2
c), (b�

2
c;�d�

2
e) and

(�d�
2
e;�b�

2
c) tile Z2 around the canonical one. The tiling

is shown for � = 5 and � = 6 in Figure 2. The points
marked in the figure correspond to the origins of tiles. The
canonical tile is marked as H0 and the neighboring tiles are
marked H1 to H4. We name the edges of the tiles as fol-
lows: the edge of tile H0 which is adjacent to the tile Hi

will be denoted by ti.
There is another kind of tiling possible in both cellular

and square grids for odd reuse distances, as shown in Fig-
ure 3 for � = 5. We shall refer to the tiling introduced
earlier as Tiling A and the one shown in Figure 3 as Tiling
B.

Definition 1. In a cellular grid tile, we define a diagonal to
be a line formed by all vertices having the same i coordi-
nate. It is represented as Li, where i, called the diagonal
number, is the corresponding i coordinate.
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σ=5

H0
H1

H0

H1

H4

Y X

H3

H2

H2
H3

H4

H5
H6

Figure 3. Possible tiling of Z2 and A2 for odd
�

Definition 2. In a square grid tile, we define a vertical to be
a line formed by all vertices having the same i coordinate.
It is represented as Vi, where i, called the vertical number,
is the corresponding i coordinate.

Definition 3. In a square grid tile, we define a diagonal to
be a line of the form i � j = c where c is a constant. It
is represented as Di where i, called the diagonal number is
given by (i� j) mod �.

In a tile corresponding to reuse distance �, there are �
diagonals/verticals as the case may be. Figure 9 shows the
diagonals in a cellular grid. Figures 10 and 11 show verti-
cals and diagonals of a square grid respectively.

Definition 4.

1. Consider a point p in a square/cellular grid and con-
sider all points which are at a distance � from p, where
� is the reuse distance. In the case of square grids, all
these points form a square centered at p and in the
case of cellular grids, they form a hexagon centered
at p. This square/hexagon will be called the bound-
ing box surrounding point p and will be denoted by
B(p). The edges, considered in a clockwise direction,
are denoted by d1; d2; : : : ; d4 in case of square grids
and d1; d2; : : : ; d6 in case of cellular grids as shown
in Figure 4.

d1

d2
d3

d4
d5

d6

d1 d2

d3d4

p p

σ=5Cellular Grid Square Grid

Figure 4. Bounding BoxB(p) with edges marked

2. Consider the bounding box for point p. Every edge
contains � � 1 vertices apart from the two corners.
Each corner, which belongs to two edges di and di+1,
is taken to be a part of the second edge di+1, where i
refers to (i mod s), s being 4 in case of square grids
and 6 in case of cellular grids. We number each ver-
tex of all edges consecutively starting with 1 being as-
signed to the left-corner vertex. These numbers are
called as position numbers. This is shown in Figures 5,
6, 7 and 8.

2.3 Optimal Colouring Schemes

A colouring scheme is optimal if it uses the smallest pos-
sible number of colours. In other words, a colouring which
uses colours from the set f0; 1; : : : ; gg will be optimal if
it uses the smallest possible value for g. From Lemma 1
and Lemma 2, we know that c(�) is a lower bound on the
number of colours used. We are concerned only with such
colouring schemes which use only c(�) different colours.

We already know that � is the minimum distance at which
channels can be reused. In other words, the same colour can
be used for vertices which are at distance � or greater. The
following lemma establishes that in an optimal colouring
the nearest vertex where a colour is reused is no more than
distance � away.

Lemma 3. Consider an optimal colouring scheme for a
wireless network model with reuse distance �. For a given
point p, there exists at least one point at distance � from p
which has the same colour as p.

Proof. Let us assume that, on the contrary, there is no point
at distance � from p which has the same colour as p. Thus,
no point inside, or on the boundary of, B(p) is assigned the
same colour as that of p.

Now, consider one of the edges of B(p), say d1 and a tile
inside B(p) such that one of its edges (t1) is a completely
contained in this edge of B(p). Clearly, p is not in this tile.
Since we have an optimal colouring, one of the points in the
tile must be assigned the same colour as the colour assigned
to p. This is a contradiction, and hence the result.

We now present a theorem using which we will be able
to establish an important property of optimal colouring
schemes.

Theorem 1. Consider an optimal colouring scheme for a
wireless network model with reuse distance �. For ev-
ery point p, there is a position number n, such that each
point corresponding to this position number on each edge
of the bounding box surrounding p has the same colour as
p. Moreover, n = d�

2
e or n = d�

2
e+ 1

Proof. Consider the edge d1 of the bounding box around p,
B(p). Consider the k different tiles, each of whose edges t1
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is a part of the edge d1 of B(p), where � = 2k + 1 for odd
� and � = 2k for even �. Refer Figures 5, 6, 7, 8.

Let P (i) denote the sequence of position numbers on d1
of B(p) that are on the edges t1 of the i-th of these k tiles.
In the case of odd �, P (i) are given by:

P (1) = h3; : : : ; k + 2i

P (2) = h3; 4; : : : ; k + 3i

...
...

P (k) = 2 + (k � 1); 2 + k; : : : ; 2k + 1 (1)

In case of even �, P (i) are given by:

P (1) = 2; 3; : : : ; k + 1

P (2) = 3; 4; : : : ; k + 2

...
...

P (k) = 2 + (k � 1); 2 + k; : : : ; 2k (2)

Since the colouring is optimal, the colour c, that the point
p is coloured in, must appear somewhere on each of these
tiles. Except for the edge t1, each of these tiles is com-
pletely contained within B(p). Thus, the colour c must ap-
pear on the edge t1 of each of these tiles, otherwise, the
reuse constraint is violated. Since no pair of vertices with
position numbers 2, 3, . . . , 2k + 1 on the edge d1 of B(p)
are at a distance �, it must be the case that the colour c
is assigned to some vertex that is common to all the above
tiles. In case of odd �, as seen from Equation( 1), the only
two common vertices are the ones with position numbers
k + 1 and k + 2, and hence, one of these two vertices must
be assigned the colour c. In case of even �, we see from
Equation( 2) that the only common vertex is the one corre-
sponding to position number k + 1, and hence, it has to be
assigned the colour c. A similar argument establishes that
on each edge of B(p), the vertices corresponding to posi-
tion numbers k + 1 and k + 2 in case of odd � and k + 1
in case of even � are the only possible candidates for being
assigned colour c.

Now, in case of odd �, suppose the vertex corresponding
to position number k+1 on the edge d1 of B(p) is assigned
colour c. Let us name this vertex q. Suppose, by way of
contradiction, the vertex with position number k +2 on the
edge d2 of B(p) is assigned colour c. Let us name this
vertex x. We will now consider cellular and square grids
separately in two different cases.

Case 1 (Cellular Grids): Consider the bounding box
B(q). The edge d3 of B(q) passes through the vertex with
position number k + 1 on the edge d2 of B(p) as shown
in Figure 6. By the above argument, one of the two vertices
with position numbers k+1 or k+2 on this edge d3 of B(q)
must be assigned colour c. But both these vertices are at a
distance less than � from the vertex x. Therefore, x cannot

be assigned colour c implying that the vertex with position
number k + 1 on the edge d2 must be assigned colour c.

Case 2 (Square Grids): Consider the bounding boxes
B(q) and B(x). Let us name the point where the edges
d2 of B(q) and d1 of B(x) intersect, r. If both q and x are
coloured c, it follows that r should be assigned the colour c.
This is not possible because r lies within the bounding box
B(p) of point p which is also coloured c. This implies that
the vertex with position number k + 1 on the edge d2 must
be assigned colour c.

Similar arguments in both cases above establish that, if
the vertex with position number k + 1 on any one edge
of B(p) is coloured the same as the colour of p, then on
each edge of B(p), the vertex with position number k+1 is
coloured the same as p.

Corollary 1. For odd �, if we choose vertices correspond-
ing to position number k + 1 on each edge of the bound-
ing box of a particular point to be coloured the same as
the point, the resulting colouring will match Tiling B (Fig-
ure 3). If the position number chosen is k + 2, the resulting
tiling is Tiling A (Figure 2).

The following characterisation of optimal colourings of
cellular and square grids is an immediate consequence of
Therorem 1.

Theorem 2. Given �, and given a tiling of a cellular or
square grid by tiles (for �), a colouring with reuse distance
� is optimal iff all the tiles in the tiling are identical in their
colour assignment.

3 Optimal L(Æ1;~1��2) Colouring

In this section, we deal with optimal frequency assign-
ment schemes for wireless networks modelled as cellular
grids and square grids. We first present an L(Æ1;~1��2)

1 234 1

1

11

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

p

Figure 5. Cellular Grid Bounding Box for � = 4
with position numbers
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colouring scheme of G(A2) for the case where reuse dis-
tance is odd i.e., � = 2k + 1, k 2 f1; 2; : : :g. This is
followed by an L(Æ1;~1��2) colouring scheme of G(Z2) for
all values of �.

3.1 Cellular Grids

We present a colouring scheme where Æ1 varies as the
square of �, for � � 5, � odd. We note that the colouring
of the entire cellular grid is achieved by colouring one tile
and reproducing the same colouring in all the tiles present
in the grid. Recalling that the number of vertices c(�), in a
tile corresponding to an odd reuse distance � = 2k + 1 is
equal to 3k2 + 3k + 1, we observe the following properties
of the tiling :

Lemma 4. 1. Colouring c(�) points starting from the
vertex of a tile along the direction j is equivalent to
colouring all the diagonals of a tile in the following
order: L0; Lk+1; L1; Lk+2; : : : ; Lk�1; L2k; Lk.

2. Along a line i = m, where m is a constant, any pair of
points which are at a distance c(�) apart will have the
same colour assigned to them.

3. Consider a point (p; q) on the line i = p. The point
(p+ 1; q� 3k � 1) on the line i = p+1 will have the
same colour as (p; q).

From Lemma 4.1, we see that a colouring for c(�) points
along a line i = m for some arbitrary m describes the
colouring for the entire grid.

To colour along the line i = 0, we proceed as follows:
Starting with the point (0; 0) which is assigned the colour
0, we assign consecutive colours to every third vertex, and
wrap around after the c(�)th vertex. This will colour all
the c(�) points in three passes uniquely. This can be easily

1

1 1

1

11

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

p

q

x

B(q)

Figure 6. Cellular Grid Bounding Box for � = 5
with position numbers

2
3

4

1

1

1

2

2

2

3

3 3

4

4

4

p

Figure 7. Square Grid Bounding Box for � = 4
with position numbers

1

2

3

4

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

5

p

q
x

B(x)

B(q)

r

Figure 8. Square Grid Bounding Box for � = 5
with position numbers

seen because c(�) = c0(k) = 3k2 + 3k + 1 is 1 mod 3.
Consecutive sets of c(�) vertices along this line follow the
same colouring pattern.

Mathematically, this colouring scheme can be expressed
as follows. Let �(i; j) represent the colour assigned to the
vertex (i; j) and �0(j) represent the colour assigned to the
vertex (0; j), i.e. �0(j) = �(0; j). We first give a formula
for �0(j) and then derive an expression for �(i; j).

�0(j) =

8<
:
�; �j = 0 mod 3
�+ 2k2 + 2k + 1; �j = 1 mod 3
�+ k2 + k + 1; �j = 2 mod 3

where �j = j mod c(�) and � = b
�j

3
c. Now, from

Lemma 4.3, we can easily derive that

�(i; j) = �0
�
j + i(3k + 1)

�

From the above formula, it can be easily seen that given
any arbitrary point (i; j) in the grid, the colour assigned to
(i; j) can be computed in constant time.
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Theorem 3. For all � = 2k+1; k = f1; 2; : : :g, the colour-
ing scheme described above is an optimal L(Æ1;~1��2)-
colouring for G(A2), with Æ1 = k2.

Proof. From Lemma 1, c(�) is a lower bound. We can eas-
ily see that each vertex in the tile is assigned a unique colour
from the set f0; 1; : : : ; c(�) � 1g. This implies that the op-
timality condition is satisfied.

0

1

2

3

4

6

7

9

10

11

12

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5

813

17

L

L

L

L L L L

0

1

2

3 4 5 6

Figure 9. L(Æ1;~1��2) colouring for � = 7

Again, the above scheme ensures that corresponding
points in neighboring tiles have the same colour and are ex-
actly � distance apart. Thus, the re-use constraint is satis-
fied.

To derive the value of Æ1, we proceed as follows. Con-
sider a point (i; j) in the grid. Its six neighbors are (i; j�1),
(i+1; j), (i+1; j+1), (i; j+1), (i�1; j) and (i�1; j�1).

The colour assigned to (i; j) according to the above
scheme will be �(i; j) = �0

�
j + i(3k + 1)

�
.

The following table shows the colours assigned to the
neighbors of (i; j). (All the colour expressions are modulo
c(�).)

(i; j � 1)
�
�(i; j) + k2 + k

�
(i+ 1; j)

�
�(i; j) + 2k2 + 3k + 1

�
(i+ 1; j + 1)

�
�(i; j) + k2 + 2k + 1

�
(i; j + 1)

�
�(i; j) + 2k2 + 2k + 1

�
(i� 1; j)

�
�(i; j) + k2

�
(i� 1; j � 1)

�
�(i; j) + 2k2 + k

�
From the above table, we see that the least difference

between the colours assigned to neighbouring points is k 2.
Hence, Æ1 = k2.

3.2 Square Grids

We present colouring schemes where Æ1 varies as the
square of �, for � � 4. There are two different schemes,
one for the case where � is odd and one for even �. We
note that the colouring of the entire square grid is achieved
by colouring one tile and reproducing the same colouring in
all the tiles present in the grid.

Odd �

Recalling that the number of vertices c(�), in a tile corre-
sponding to an odd reuse distance � = 2k + 1 is equal to
2k2 + 2k + 1, we observe the following properties of the
tiling :

Lemma 5. 1. Colouring c(�) points starting from the
vertex of a tile along the direction j is equivalent to
colouring all the diagonals of a tile in the following
order: V0; Vk ; V2k; Vk�1; : : : ; Vk+2; V1; Vk+1.

2. Along a line i = m, where m is a constant, any pair of
points which are at a distance c(�) apart will have the
same colour assigned to them.

3. Consider a point (p; q) on the line i = p. The point
(p+1; q+ 2k+1) on the line i = p+1 will have the
same colour as (p; q).

From Lemma 5.1, we see that a colouring for c(�) points
along a line i = m for some arbitrary m describes the
colouring for the entire grid.

To colour along the line i = 0, we proceed as follows:
Starting with the point (0; 0) which is assigned the colour 0,
we assign consecutive colours to every second vertex, and
wrap around after the c(�)th vertex. This will colour all the
c(�) points in two passes uniquely. This can be easily seen
because c(�) = c0(k) = 2k2 + 2k + 1 is odd and hence,
points coloured in the first pass will not be repeated again.
Consecutive sets of c(�) vertices along this line follow the
same colouring pattern.

Mathematically, this colouring scheme can be expressed
as follows. Let 
(i; j) represent the colour assigned to the
vertex (i; j) and 
0(j) represent the colour assigned to the
vertex (0; j), i.e. 
0(j) = 
(0; j). We first give a formula
for 
0(j) and then derive an expression for 
(i; j).


0(j) =

�
�; �j even
�+ k2 + k + 1; �j odd

where �j = j mod c(�) and � = b
�j

2
c. Now, from

Lemma 5.3, we can easily derive that


(i; j) = 
0
�
j � i(2k + 1)

�
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From the above formula, it can be easily seen that given
any arbitrary point (i; j) in the grid, the colour assigned to
(i; j) can be computed in constant time.

Theorem 4. For all � = 2k+1; k = f1; 2; : : :g, the colour-
ing scheme described above is an optimal L(Æ1;~1��2)-
colouring for G(Z2), with Æ1 = k2.

Proof. From Lemma 2, c(�) is a lower bound. We can eas-
ily see that each vertex in the tile is assigned a unique colour
from the set f0; 1; : : : ; c(�) � 1g. This implies that the op-
timality condition is satisfied.
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V
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19

20

21

22
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24

5
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Figure 10. L(Æ1;~1��2) colouring for � = 7

Again, the above scheme ensures that corresponding
points in neighboring tiles have the same colour and are ex-
actly � distance apart. Thus, the re-use constraint is satis-
fied.

To derive the value of Æ1, we proceed as follows. Con-
sider a point (i; j) in the grid. Its four neighbors are
(i� 1; j), (i; j + 1), (i+ 1; j), and (i; j � 1).

The colour assigned to (i; j) according to the above
scheme will be 
(i; j) = 
0

�
j � i(2k + 1)

�
.

The following table shows the colours (modulo c(�))
assigned to the neighbors of (i; j).

(i� 1; j)
�

(i; j) + k2 + 2k + 1

�
(i; j + 1)

�

(i; j) + k2 + k + 1

�
(i+ 1; j)

�

(i; j) + k2

�
(i; j � 1)

�

(i; j)� k2 � k � 1

�
From the above table, we see that the least difference

between the colours assigned to neighbouring points is k 2.
Hence, Æ1 = k2.

Even �

We now present a colouring scheme for even �; � � 4, i.e.
� = 2k, k 2 f2; 3; : : :g. We first note that the total number
of points in a tile in terms of k will be equal to 2k2. Since
colouring of the entire grid is achieved by colouring one tile
and reproducing the same colouring in all tiles of the grid,
description of the colouring for a single tile is sufficient.

The colouring scheme is shown in Figure 11. Alternate
diagonals are coloured consecutively starting with D0, i.e.
the following diagonals D0, D2, . . . , D��2, D1, D3, . . . ,
D��1 are coloured in order. Starting with the origin of the
tile which is assigned colour 0, points are coloured consec-
utively within each diagonal.

Let 
(i; j) be the colour assigned to the point (i; j) in
the grid. It can be mathematically expressed as follows:


(i; j) = b
(i� j) mod 2k

2
ck +

b
(i+ j) mod 2k

2
c

+((i+ j) mod 2)k2
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Figure 11. L(Æ1;~1��2) colouring for � = 8

Theorem 5. For all � = 2k; k = f2; 3; : : :g, the colour-
ing scheme described above is an optimal L(Æ1;~1��2)-
colouring for G(Z2), with Æ1 = k2 � k � 1.

Proof. From Lemma 2, c(�) is a lower bound. We can eas-
ily see that each vertex in the tile is assigned a unique colour
from the set f0; 1; : : : ; c(�) � 1g. This implies that the op-
timality condition is satisfied.

Again, from the formula, we see that corresponding
points in neighboring tiles have the same colour and are ex-
actly � distance apart. Thus, the re-use constraint is satis-
fied.
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To derive the value of Æ1, we proceed as follows. Con-
sider the neighbors of an arbitrary point (i; j) in the grid.
They are (i � 1; j), (i; j + 1), (i + 1; j) and (i; j � 1).
We will find the differences between the colours assigned
to (i; j) and each of its neighbors. The least difference will
be equal to Æ1.

There are two cases to consider: 1) (i + j) is even. 2)
(i+j) is odd. But note that (i+j) value for alternate points
in both X and Y directions will be of the same parity. If we
consider a point for which (i + j) is odd, (i + j) for all its
neighbors will be even and vice versa. It follows that we
need to consider only one case, considering the other case
too will yield the same expressions for the differences.

Consider a point (i; j) and suppose (i + j) is odd. Let
the colour assigned to (i; j) be 
(i; j). The following table
shows the colours assigned to the neighbors of (i; j).

(i� 1; j) 
(i; j)� k2

(i; j + 1) 
(i; j)� k2 � k + 1,
if (i+ j) mod 2k = 2k � 1


(i; j)� k2 + 1, otherwise
(i+ 1; j) 
(i; j)� k2 + 1,

if (i+ j) mod 2k = 2k � 1

(i; j)� k2 + k + 1, otherwise

(i; j � 1) 
(i; j)� 2k2 + k,
if (i� j) mod 2k = 2k � 1


(i; j)� k2 + k, otherwise

Clearly, from the above table, the least difference be-
tween the colours assigned to neighbouring points is k 2 �
k � 1. Hence, Æ1 = k2 � k � 1.

3.3 Tight Upper Bound on Æ1

The previous subsections presented colouring schemes
for odd reuse distances where Æ1, the channel separation
constraint had a value of k2, where � = 2k + 1. Based on
experimental verification by means of an exhaustive search
for all values of k � 4, we conjecture that k2 is, in fact,
an upper bound on the value of Æ1 for optimal colour-
ings of square and cellular grids with odd reuse distance
� = 2k + 1.

4 Conclusions

We characterised optimal channel assignment schemes
for cellular and square grids, and hence showed that any
such scheme must be uniform across the entire grid. More
specifically, in an optimal colouring, the colouring of a tile
(for a given �) will be identically repeated in all the tiles
throughout the grid. We also presented optimal L(Æ1;~1��2)
colouring schemes, with a high value for Æ1, for square grids
for all � � 4 and for cellular grids for the case where reuse
distance is odd i.e., � = 2k + 1, k 2 f1; 2; : : :g. The

previous best known results have been restricted to Æ1 /
8k2

3
[3, 4], in case of cellular grids and Æ1 � b��1

2
c [2] in

case of square grids. We conjecture that our value of Æ1 is a
tight upper bound on Æ1 for optimal colouring schemes for
these grids.

Several interesting open questions arise from the work
presented here. We list a few of them here: (1) Find optimal
colouring schemes for cellular grids with high Æ1 values for
the case when � is even. (2) Find and prove the existence of
tight upper bounds for Æ1; Æ2; : : : for a general �.
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