Optimal multi-channel data allocation
with flat broadcast per channel

A.A. Bertossi
Dept. of Comp. Scie.
University of Bologna
40127 Bologna, ITALY
bertossi@cs.unibo.it

R. Rizzi
Dept. of Comp. Scie. and Telecom.
University of Trento
38050 Povo, Trento, ITALY
rrizzi@science.unitn.it

Abstract

Broadcast is an efficient and scalable way of trans-
mitting data to an unlimited number of clients that
are listening to a channel. Cyclically broadcasting data
over the channel is a basic scheduling technique, which
is known as flat scheduling. When multiple channels
are available, partitioning data among channels in an
unbalanced way, depending on data popularities, is an
allocation technique known as skewed allocation. In
this paper, the problem of data broadcasting over mul-
tiple channels is considered assuming skewed data allo-
cation to channels and flat data scheduling per channel,
with the objective of minimizing the average waiting
time of the clients. Several algorithms, based on dy-
namic programming, are presented which provide op-
timal solutions for N data items and K channels.
Specifically, for data items with uniform lengths, an
O(NKlogN) time algorithm is proposed, which im-
proves over the previously known O(N2K) time algo-
rithm. When K < 4, faster O(N) time algorithms are
exhibited. Moreover, for data items with non-uniform
lengths, it is shown that the problem is N P-hard when
K = 2, and strong NP-hard for arbitrary K. In
the former case, a pseudo-polynomial algorithm is dis-
cussed, whose time is O(NZ) where Z is the sum of
the data lengths.

Keywords: Wireless communication, data broad-
cast, multiple channels, skewed allocation, flat schedul-
ing, average waiting time, dynamic programming.

M.C. Pinotti
Dept. of Math. and Comp. Scie.
University of Perugia
06123 Perugia, ITALY
pinotti@science.unitn.it

S. Ramaprasad
Dept. of Comp. Scie.
Brown University
Providence, RI 02912, USA
shashank@cs.brown.edu

M.V.S. Shashanka
Dept. of Cognitive and Neural Sys.
Boston University
Boston, MA 02215, USA
mvss@cns.bu.edu

1 Introduction

In wireless asymmetric communication, broadcast-
ing is an efficient way of simultaneously disseminat-
ing data to a large number of clients. A server of a
base-station continuously transmits data items from a
given set over a wireless channel, while clients passively
listen to the shared channel waiting for their desired
item. The server follows a broadcast schedule for de-
ciding which item of the set has to be transmitted at
any time instant. An efficient broadcast schedule min-
imizes the client expected delay, that is, the average
amount of time spent by a client before receiving the
item he needs. The client expected delay increases with
the size of the set of the data items to be transmitted
by the server. Indeed, the client has to listen to many
unwanted data before receiving his own data. The ef-
ficiency can be improved augmenting the server band-
width, for example, allowing the server to transmit over
multiple disjoint physical channels and therefore defin-
ing a shorter schedule for each single channel. In a
multi-channel environment, in addition to a broadcast
schedule for each single channel, an allocation strategy
has to be pursued so as to assign data items to chan-
nels. Moreover, the clients can access either a single
channel at a time or all available channels simultane-
ously. In the former case, if the client can access only
one prefixed channel and can potentially retrieve any
available data, then all data items must be replicated
over all channels. Otherwise, data can be partitioned

among the channels, thus assigning each item to only
one channel. Index information for data allocation or
for broadcast schedule can help the client to fast locate
the desired item on the proper channel.

Several solutions for data allocation and broadcast
scheduling have been proposed in the literature. The
proposed solutions depend on the perspectives faced by
the research communities.

Specifically, the networking community faces a ver-
sion of the problem, known as the Broadcast Problem,
which consists in finding an infinite schedule on a sin-
gle channel [12, 3, 7, 8]. Such a problem was first in-
troduced in the teletext systems by [2]. Although it is
widely studied (e.g., it can be modeled as a special case
of the Maintenance Scheduling Problem and the Multi-
Item Replenishment Problem [3, 7]), its tractability is
still under consideration. Therefore, the emphasis is on
finding near optimal schedules for a single channel. Al-
most all the proposed solutions follow the square root
rule (SRR). Such a rule produces a broadcast sched-
ule where each data item appears with equally spaced
replicas, whose frequency is proportional to the square
root of its popularity and inversely proportional to the
square root of its length [2]. The multi-channel sched-
ule is obtained by distributing in a round robin fashion
the schedule for a single channel [12]. Table 1 summa-
rizes the results known in the literature for the Broad-
cast Problem depending on the number of channels and
on the item lengths. For uniform lengths, namely all
items of the same length, the problem complexity is
open to our knowledge, while for non-uniform lengths
the problem has been shown to be strong N P-hard.

On the other hand, the database community seeks
for a periodic broadcast scheduling which should be
easily indexed [6]. However, the solutions of the net-
working community preclude indexing. For the single
channel, the obvious schedule that admits index is the
flat one which, fixed an order among the data items,
transmits them once at a time, in a round-robin fash-
ion [1]. In a flat schedule, however, the client expected
delay is half of the schedule period and becomes in-
feasible for a large period. To decrease the client ex-
pected delay, still preserving indexing, flat schedules
on multiple channels can be adopted [10, 11, 14]. How-
ever, in such a case the allocation of data to channels
becomes critical. For example, allocating items in a
balanced way simply scales the expected delay by a
factor equal to the number of channels. To overcome
this drawback, skewed allocations have been proposed
where items are partitioned according to their popu-
larities so that the most requested items appear in a
channel with shorter period [10, 14]. Hence, the re-
sulting problem is slightly different from the Broadcast

Problem since, in order to minimize the client expected
delay, it assumes skewed allocation and flat scheduling.
This variant of the problem is easier than the Broadcast
Problem. Indeed, as proved in [14], the optimal solu-
tion for uniform lengths can be found, by dynamic pro-
gramming, in time polynomial in the number of items
and channels. For non-uniform lengths, the problem
tractability was unknown, but a heuristic has also been
proposed in [14].

In this paper, the problem of data broadcasting over
multiple channels, with the objective of minimizing the
average waiting time of the clients, is considered un-
der the same assumptions as in [14], that is skewed
allocation to multiple channels and flat scheduling per
channel.

Both the uniform and non-uniform length problems
are faced and solved to the optimum, establishing also
their tractability. All the proposed algorithms are
based on dynamic programming, and provide optimal
solutions for N data items and K channels as summa-
rized in Table 2. All the algorithms for K > 1 assume
a sorting preprocessing step on the data items, which
takes an O(N log N) extra time, not reported in the ta-
ble. Specifically, for uniform lengths, an O(N K log N)
time algorithm is proposed, which improves over the
previously known O(N?K) time algorithm by [14].
When K < 4, faster O(N) time algorithms are exhib-
ited. Moreover, for non-uniform lengths, it is shown
that the problem is N P-hard when K = 2, and strong
NP-hard for arbitrary K. When K = 2, a pseudo-
polynomial time algorithm is discussed which incre-
mentally solves several Knapsack instances. Its over-
all time is O(NZ), where Z is the sum of the data
lengths. Such an algorithm is effective when the items
have small length. For instance, if each item length is
bounded by a constant, then Z = O(N) and the overall
time becomes O(N?). The above algorithm is as effec-
tive as the standard pseudo-polynomial time algorithm
for Knapsack, commonly judged to be extremely effec-
tive in practice [9], and allows Fully Polynomial Time
Approximation Schemes (FPTAS) to be obtained as it
is for the Knapsack problem. For arbitrary K, an algo-
rithm is devised with time exponential in the maximum
data length z.

2 Preliminaries

Consider a set of K identical channels, and a set
D ={dy,ds,...,dn} of N data items. Each item d; is
characterized by a probability p; and a length z;, with
1 <i < N. The probability p; represents the demand
probability of item d; to be requested by the clients,
and it does not vary along the time. Clearly, Efil pi =

f channels | item lengths complexity solution references
1 uniform ? %—approxima,tion [3]
heuristic [12]
0(1) uniform ? PTAS 8
1 non-uniform strong N P-hard | 3-approximation 7
non-uniform | strong NP-hard heuristic [7,12]

Table 1. Known results for the Broadcast Problem. PTAS stands for Polynomial

Time Approzimation Scheme.

f channels | item lengths | complexity | solution running time references
1 non-uniform P optimal o(1) folklore
<4 uniform P optimal O(N) this paper
K uniform P optimal O(N?K) [14]
O(NKlogN) this paper
2 non-uniform N P-hard optimal O(NZ) this paper
K non-uniform strong optimal | O(K(IZ_,(L; + 1))?) | this paper
NP-hard [heuristic | O((N + K)log K) [14]

Table 2. Known results for the broadcast problem with skewed allocation and flat scheduling. In
the table, Z is the sum of the data lengths, z is the maximum data length, and L; is the number of
data items of length ¢. When K > 1, all the algorithms assume a sorting preprocessing step on the
data items, that requires O(N log N) time, which is not included in the running time.

1. The length 2; is an integer number, counting how
many time units (or, ticks) are required to transmit
item d; on any channel. When all data lengths are the
same, i.e. z; = z for 1 < i < N, the lengths are called
uniform and are assumed to be unit, i.e. z = 1. When
the data lengths are not the same, the lengths are said
non-uniform.

The items have to be partitioned into K groups
G1,...,Gk. Group Gj collects the data items assigned
to channel j, with 1 < j < K. The cardinality of G;
is denoted by NN;, while the sum of its item lengths is
denoted by Z;, i.e. Z; = 3, g, - Note that since
the items in G; are cyclically broadcast according to a
flat schedule, Z; is the schedule period on channel j.
Clearly, in the uniform case Z; = Nj, for 1 < j < K.
If item d; is assigned to channel j, the client expected
delay for receiving item d; is half of the period, namely
%. Therefore, the average expected delay (AED) over
all data items and over all channels is

1 K
AED=23"(2; > »i 1)

j=1 d;€Gj

Given K channels, a set D of N items, where
each data item d; comes along with its probability p;
and its integer length z;, the K-Non-Uniform Alloca-
tion Problem consists in partitioning D into K groups
G1,...,GK, so as to minimize the objective function
AED given in Equation 1.

In the special case of equal lengths, the above prob-
lem is called K-Uniform Allocation Problem and the
corresponding objective function is derived replacing
Z; with N; in Equation 1.

As an example, consider a set of N = 6 items with
uniform lengths and K = 3 channels. Let the de-
mand probabilities be p; = 0.37, p» = 0.25, ps = 0.18,
ps = 0.11, ps = 0.05 and pg = 0.04. The optimal
solution assigns item dj to the first channel, items
dy and dsz to the second channel, and the remaining
items to the third channel. The corresponding AED is
0.37 +2(0.25 + 0.18) + 3(0.11 + 0.05 + 0.04) = 1.83.

The rest of this section is devoted to briefly recalling
the dynamic programming solution proposed in [14] for
the K-Uniform Allocation Problem.

Lemma 1. [14] Let G}, and G; be two groups in an
optimal solution. Let d; and d; be items with d; € Gy,
and d; € Gi. If Ny, < Nj, then p; > pi. Similarly, if
Di > Pk, then N < Nj.

In other words, the most popular items are allocated
to less loaded channels so that they appear more fre-
quently. The following corollary shows how to exploit
Lemma 1 in cleaning the structure of the K-Uniform
Allocation Problem.

Corollary 1. Let dy,ds,...,dny be N items with p; >
pr. whenever i < k. Then, there exists an optimal solu-
tion for partitioning them into K groups G1,...,Gxk,
where each group is made of consecutive elements.

Hereafter, thus, it is assumed that the items are
sorted by their probabilities, and the optimal solutions
will be sought within the class of the segmentations.
A segmentation is a partition G1,...,Gg, such that if
d; € Gj and dj, € G then dj, € G; whenever i < h < k.
A segmentation

gl)"‘7deﬂgiBl+17“'5dB247"‘7dBK—1+17“‘5dN

/

v e ~~

G1 G Gk

will be more compactly denoted by the (K — 1)-tuple

(BlaB2a .. 'aBK—l)

of its right borders, where border B; is the index of the
last item that belongs to group G;. Notice that it is
not necessary to specify By, the index of the last item
of the last group, because its value will be NV for any
solution. From now on, Bg 1 will be referred to as the
final border of the solution.

For any two integers n < N and k < K, let OPT} ;,
denote an optimal solution for grouping items ds, .. .d,
into k groups and let opt, r be its corresponding cost.
Let C;, be the cost of putting consecutive items
di,...,dy into one group, i.e. C;p = (h—i+1) Zs:iPQ'
Hence, opt,,1 = Ci,, for every n. For k > 1, the fol-
lowing recurrence holds:

optn.k = min

teg-1+ Corrn} (2
f€{1,2,...,n—1}{0p th-1+ Cerin}t (2

The O(N?K) time algorithm proposed in [14] is
a straightforward dynamic programming implementa-
tion of Recurrence 2.

3 Uniform Lengths

An improvement on the algorithm proposed in [14]
for the K-Uniform Allocation Problem can be achieved
exploiting the properties of optimal solutions.

Definition 1. Let dy,ds, . ..,dN be items sorted by de-
creasing probabilities. An optimal solution OPTn ik =
(B1,Bs,...,Bk 1) is called left-most optimal and de-
noted by LMOn Kk if, for any other optimal solution
(Bi,B),...,By_4), it holds Bx_1 < By _;.

The left-most optimal solutions do not need to be
unique. However, it is easy to check that there exists
aunique (By, Ba, ..., Bg_1) such that (By, Ba, ..., B;)
is a left-most optimal solution for partitioning into ¢+1
groups the items dy,ds, .. .,dp,,,, for every i < K.

Definition 2. A left-most optimal solution
(B1,Bs,...,Bk_1) 1is called strict left-most op-
timal solution, and denoted by SLMOnk, if
(B1,Bs,...,B;) is a LMOB,,, it1, for every i < K.

Lemma 2. Let the items dy,ds,...,dN
be sorted by decreasing probabilities. Let
LMON—I,K = (Bl,BQ,...,BK_l) and OPTN,K =
(By,BS,...,Byx_1). Then, By | > Bk _1.

Proof. Let the costs of LMOn_1,k and OPTn i be,
respectively, optn_1,k = optBg_,, k-1 + CByx_1+1,N—1
and optn,k = optp;_ k-1 +ChB_ +1,N-

Consider the feasible solution for partition-
ing N items into K channels obtained from
(B1,Ba,...,Bk_1) just putting dy into the K-th
channel. Then:

optp!

v k-1 +CB_ 41,8 =opink <

OptBK—l,Kfl + CBK—1+1,N' (3)

Assuming by contradiction By ; < Bg_; implies
that:
Cp,_+1,8n—CB,_ y1,N-12

CBx_1+1,N — CBx_141,N-1 (4)

Subtracting Equation 4 from Equation 3 yields:

optp

k-1 +Cr_ 11,81 <

optB,_1, k-1 + CBy_1+1,N—1 = OPtN_1,K

which contradicts the fact that (By,Ba,...,Bk_1) is
LMOnN_1,k. O

In practice, Lemma 2 says that, given the items
sorted by decreasing probabilities, building an optimal
solution for N items from an optimal solution for N —1,
the final border Bx_; can only move on the right. Such
a property can be easily generalized as follows to prob-
lems of increasing sizes. From now on, let B]': denote
the j-th border of LMO; j, with k > j > 1.

Corollary 2. Let the items dy,ds, . ..,dy be sorted by
decreasing probabilities, and let a < b < ¢ < N. Then,
By <Bj ; <Bj ;.

Proof. Follows directly from Lemma 2. O

Lemma 2 plays a fundamental role in speeding up
the dynamic programming algorithm. Indeed, it leads
to an O(K N log N) time algorithm, as detailed below.
The new algorithm solves subproblems in a dichotomic
fashion. Formally, assume that LM O, ;1 has been
found for every n € [1,...N]. If the LMO,;; and
LMO,, solutions are also known for some 1 < [<
r < N, then the algorithm can compute LM O g by
the following recurrence:

OptH'TT,k = min

ee{B}_,,--By_y

}{Optl,kfl + Ce+1,l+TT} (5)

NY; 14 [3=NT; 74 [ger N3 My j = oo;

if Mk—l,l + C[+1’J‘ < Mk,j then
My,j < Myg_1,0+ Coy1,j;

Input: N items sorted by decreasing probabilities, and K groups;
begin
Initialize: for ¢ from 1 to N do
My ; < Cy i3
Loop 1: for k from 2 to K do
Fro+ Fr1 < 1; Fy ny1 < N;
Loop 2: for t from 1 to [log N| do
Loop 3: for i from 1 to 2t~1 do
i[5
if i =21 thenr 7+ 1;
Loop 4: for £ from Fy; to Fy , do
Fk,j «— é;
end

Figure 1. The O(K N log N) time algorithm for the K-Uniform Allocation Problem.

where Bi_l and Bj,_, are, respectively, the final bor-
ders of LM Oy, and LM Oy .

In details, the algorithm is shown in Figure 1. It uses
the two matrices M and F', whose entries are filled up
row by row (Loop 1). A generic row k is filled in stages
(Loop 2). Each stage corresponds to a particular value
of the variable ¢ (Loop 3). The variable j corresponds
to the index of the entry which is currently being filled
in stage t. The variables [(left) and r (right) corre-
spond to the indices of the entries nearest to j which
have been already filled, with I < j < r.

If no entry before j has been already filled, then
I =1, and therefore the final border Fj, ; is initialized
to 1. If no entry after j has been filled, then r = N,
and thus the final border Fj, n is initialized to N. To
compute the entry j, the variable £ takes all values
between Fj; and Fj,. The index ¢ which minimizes
the recurrence in Loop 4 is assigned to Fj ;, while the
corresponding minimum value is assigned to My ;.

To show the correctness, consider how a generic row
k is filled up. In the first stage (i.e. t = 1), the entry
Mk,% is filled and £ ranges over all values 1,..., N. By
Corollary 2, observe that to fill an entry M}, ; where ! <
%, one needs to consider only the entries My_; ; where
(< Fk’%. Similarly, to fill an entry M},; where [> %,
one needs to consider only the entries My_; , where
l> Fk,%. In general, one can show that in stage t, to

compute the entries My, ; with j = [271N] and 1 <
i < 201 only the entries Mj,_1 , must be considered,
where Fj; < £ < Fy, and | and r are (;:—_ﬁN] and
[57=r N, respectively. Notice that these entries have
been computed in earlier stages. The above process
repeats for every row of the matrix. The algorithm
proceeds till the last entry Mg, n, the required optimal
cost, is computed. The strict left-most optimal solution
SLMOnk = (B1,Bs,...,Bkx_1) is obtained, where

By_1 :Fk,Bk for1< k< K and Bk = N.

As an example, consider Figure 2 which illustrates
the execution of Loop 2 with ¢ = 3, where the entries
corresponding to i = 1,2,3,4 of row k of matrix M
are being computed. The %—th, %—th, and %—th en-
tries have already been computed in stages 1 and 2.
Let Fy, ~, Fy ~ and F sv be the final borders corre-
sponding to the entries above. To compute the entry
corresponding to ¢ = 1, one only needs to consider en-
tries from Mj_q1; to Mk—l,F,c ~ - Similarly, for ¢ = 2,
only the entries from Mk,l,pk,; to Mk,l,pk% are to

be examined. For i = 3, one examines the entries from
Mk—l,Fk% up to Mk_l,pk)%, and, finally, for i = 4,

the entries beyond My, F, gy are visited.
T4

N/4 N/2 3N/4
t=1,2\ /u /l \ \ \ row k of M
Fk,N/4 Fk,N/Z Fk,3N/4
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ row k=1 of M
t=3 [W [T B W B [T | | rowkofm
i=1 i=2 i=3 i=4

j=N/8 j=3N/8 j=5N/8 j=7N/8

Figure 2. Tllustration of Loop 2.

Lemma 3. The total number of comparisons involved
in a stage is O(N).

Proof. The whole execution of Loop 3 of Figure 1 cor-
responds to the execution of a stage for a particular
value of t. The total number of comparisons involved
is equal to the sum of the number of values the variable

¢ takes in Loop 3. This is equal to:

2t—1

> (Fer — Fry+1) (6)

i=1

where I = [Z=5N| and r = [N]. Unrolling For-
mula 6, one obtains:

2t—1
;(Fk,(#lm —F a0 =
1=

(Fkb%] = Fro+ 1)+

(Fk,|' 2N _Fk’[N ‘|+1)+...+

2t—1 ot—1

(Fy [2zn] — F,

ot=1

'|+1):

ey
Fun—Fro+271 =
N —-1+2""1=0O(N)
O

Theorem 1. The K-Uniform Allocation Problem can
be solved in O(K N log N) time.

Proof. From Lemma 3, one stage of Figure 1, corre-
sponding to the execution of Loop 2 for a particular
value of ¢, involves O(N) comparisons. Since Loop 2
runs [log N times and Loop 1 is repeated K times,
the overall time complexity is O(NK log N). O

3.1 At Most Four Channels

In this subsection, faster algorithms are proposed for
the K-Uniform Allocation Problem, when the number
of channels K is less than or equal to 4. All algorithms
require O(N) time to solve the problem and they are
based on an efficient incremental technique when there
are two channels. Specifically, when K = 2, adding
a new item with lowest (or, highest) probability to an
optimal partial solution can be done in O(1) (resp.,
O(log N)) time.

When K = 2, Lemma 2 can be further simplified.
Indeed, in such a case, the final border can move at
most one position to the right.

Lemma 4. Let the items di,ds,...,dy be sorted by
decreasing probabilities. Let LMOn_12 = (B1) and
LMOy2 = (B!). Then, By < B} < By + 1. O

As a consequence of the above lemma, computing
LMOy,» given LMOp_12 = (B?™ ') can be done in
constant time just applying the following recurrence:

optn 2 = min

I) {Cie+Cry1n} (1)
te{Br~1 Br~111}

Therefore, the following theorem holds:

Theorem 2. All the solutions LM Oy, 2, with 1 <n <
N, of the 2-Uniform Allocation Problem can be com-
puted in O(N) time.

The above result leads to an efficient algorithm for
finding the optimal solution LM Op3 of the 3-Uniform
Allocation Problem. Indeed it is easy to see that the
solution for K = 3 can be obtained by combining the
solutions for K = 2 and K =1 as follows:

optn 3 = ee{minN}{Opt[’2 + Cry1n} (8)

Corollary 3. The optimal solution LM Op 3 of the 3-
Uniform Allocation Problem can be computed in O(N)
time.

Following a similar reasoning, the 4-Uniform Alloca-
tion Problem can be solved by combining the solutions
of two problems with K = 2 for, respectively, the first
n items and the remaining N — n items. Theorem 2
showed how to solve in O(N) time all the problems for
the first n items, with 1 < n < N. In order to apply
the same technique to solve in O(NV) time all the prob-
lems for the remaining N — n items, a result similar to
Lemma 4 is needed when the new item to be added is
that with the greatest probability.

In the rest of this subsection, the items are assumed
to be indexed by decreasing probabilities and the no-
tation is slightly modified in order to consider both the
above problems. Specifically, consider the 2-Uniform
Allocation Problem. Let opt; ;2 denote the cost of the
leftmost optimal solution LM O; ;o for allocating the
items d;, ..., d; to two channels.

Lemma 5. Let the items dy,ds,...,dN be sorted by
decreasing probabilities. Let LMOs N2 = (B1) and
LMOl’N,z = (Bi) Then, Bi S Bl.

Proof. Similar to Lemma 2. O

For the aim of determining the exact index of the
final border B} of LM O n,2, consider the feasible so-
lutions obtained inserting d; into G; and moving left
the border B; of LM O, n2 one position at a time.
Continue to move left B; while the cost of the result-
ing feasible solution decreases, but stop moving and
fix B] = By as soon as its cost starts increasing. The
following lemma guarantees that the so founded Bj is
optimal.

Lemma 6. Let the items di,ds,...,dy be sorted by
decreasing probabilities. Let Sp,n2 = (B) and S, x5 =
(B — 1) be feasible solutions such that their costs are
increasing, that is sp, N2 < 8;, o Then, for S o =

. n !
(B —2), its cost Sn,N,2 > Sp,N2-

As a consequence of the above lemma, given
LMO, N2 = (B}), LMO,_1,n, can be computed just
applying the following recurrence:

optn_1,N2 = min

C C 9
fe{n—l,...,B{‘}{ 10+ Cryrn} (9)

Note that in Equation 9 a single opt,_1,n,2 can be
found in O(log(B}* — n)) time by applying a binary
search in the range [n — 1,..., B}"]. However, opt, n,2
for all 1 <n < N can be found in linear time.

Theorem 3. All the solutions LM O, N2, with 1 <
n < N, of the 2-Uniform Allocation Problem can be
computed in O(N) time.

Proof. Consider the sequence of solutions
LMON,LN,Q = (B{V_l), LMON,Q,N,Q = (B{V_2),
..., LMO; n2 = (B}). By Lemma 6 the overall num-
ber of comparisons is O(Y._ (B! — B})) = O(N).
O

Theorems 2 and 3 yield to an efficient algorithm for
finding the optimal solution LM Oy 4 of the 4-Uniform
Allocation Problem, by combining two solutions for
K=2:

min__ {opti,¢2 + opteyi,N2} (10)

Opt1,N4 =
Ze{lz"wN}

Corollary 4. The optimal solution LMOpy 4 of the
4-Uniform Allocation Problem can be found in O(N)
time.

4 Non-Uniform Lengths

Consider now the K-Non-Uniform Allocation Prob-
lem for an arbitrary number K of channels. In contrast
to the uniform case, introducing items with different

lengths makes the problem computationally intractable
(see [4]).

Theorem 4. The K-Non-Uniform Allocation Problem
is strong N P-hard. O

As a consequence of the above result, there is no
pseudo-polynomial time optimal algorithm or fully
polynomial time approximation scheme (FPTAS) for

solving the K-Non-Uniform Allocation Problem. How-
ever, when the maximum item length z is bounded by
a constant, a polynomial time optimal algorithm can
be derived where z appears in the exponent.

Recall that the sum of the item lengths in group
G; is denoted by Z;. The following result generalizes
Lemma 1.

Lemma 7. Let Gp and G; be two groups in an
optimal solution. Let d; and dy, be items with z; = 2z
and d; € Gy, dy € Gj. If Zy, < Zj, then p; > pi.
Similarly, if p; > pk, then Z, < Z;. O

Based on the above lemma, some additional nota-
tions are introduced. The set D of items can be viewed
as a union of disjoint subsets D; = {d},ds,...,d} },
1 < i < z, where D; is the set of items with length 4,
L; is the cardinality of D;, and z is the maximum item
length. Let p} represent the probability of item df, for
1<j <L

The following corollary generalizes Corollary 1.

Corollary 5. Let d,dj,...,d; be the L; items of
length i with pi, > pi whenever m < n, for i =
1,...,z. There is an optimal solution for partitioning
the items of D into K groups Gi,...,Gk, such that if
a<b<candd,d. €Gy, thend, € G;.

a’’c

In the following, the items in each D; are assumed
to be sorted by decreasing probabilities, and optimal
solutions will be sought of the form:

1 1 1 1 1 1
dhyody syl ed,
G1 G2 Gk
2 2 2 2 2 2
B ey
G, G2 Gk
z z z z z 2z
fila---:dBliaiiBf-i-la---angj---;dBf(_l-i-la---;sz
G, Ga Gk

where B;: is the highest index among all items of
length ¢ in group Gj. The solution will be represented
as (B1,Bs,...,Bk_1), where each B; is the z-tuple
(Bj,B,...,Bf) for 1 < j < K — 1. From now on,
Bi,. | will be referred to as the final border for length
i and Bx_1 as the final border vector.

Let OPTy, .. n..r denote the optimal solution for
grouping the Y7 | n; items di,ds,... di , 1 <i <z,
into k groups and let opt,, ...,k be its corresponding

cost. Let Ci, n,,...1.,n. be the cost of putting items I;
through n;, for all i = 1,2,...,z, into one group, i.e.

z n;
YD 8

i=1 j=l;

Ciingyoon. = (Z ing —l; + 1))

=1

Now, consider the recurrence:

Optng,...on, kb =

emin {Opth,...,fz,k—l +Cel+1,n1,...,ez+1,nz} (11)
1<i<z

To solve this recurrence by using dynamic program-
ming, consider a (z + 1)-dimensional matrix M, made
of K rows in the first dimension and L; columns in
dimension 7 + 1 for ¢ = 1,...,z. Each entry is rep-
resented by a (z + 1)-tuple My p,,... n,, where k cor-
responds to the row index and n; corresponds to the
index of the column in dimension i + 1. The entry
My ny,...,n., represents the optimal cost for partition-
ing items dj through df, , for i = 1,2,...2, into k
groups. There is also a similar matrix F' where the
entry Fj ... n, corresponds to the final border vec-
tor of the solution whose cost is My p,,... n.. The ma-
trix entries are filled row by row. The optimal solu-
tion is given by OPTy,, ...k = (B1,Bs,...,Bk_1)
where, starting from Bx = (Li, Lo, ..., L), the value
of By, is obtained from the value of By, and by F as
By = Fyi1,By,, for k=1,...,K — 1. An algorithm
derives directly from Recurrence 11.

Theorem 5. The K-Non-Uniform Allocation Problem
can be solved in O(K []_,(L; +1)?) time.

The above algorithm requires a time which is expo-
nential in the maximum item length z. Therefore, it is
practical only when z is a small costant (for instance
z = 2). Observe that there is no hope to devise an algo-
rithm whose time complexity is not exponential since
the problem is strong N P-hard.

41 Two Channels

Now, consider a special case of the K-Non-Uniform
Allocation Problem where the number of channels is
equal to 2. The following result holds [4].

Theorem 6. The 2-Non-Uniform Allocation Problem
is NP-hard. O

Although the 2-Non-Uniform Allocation Problem is
N P-hard, it is not N P-hard in the strong sense. There-
fore, it is possible to devise a pseudo-polynomial time

algorithm, that is an algorithm whose time is polyno-
mial in the item lengths.

The problem is to find a solution G; and G5 such
that Z; Py + Z5 P, is minimized, where P; and P, de-
note the sum of the demand probabilities of items in G
and G5, respectively. From now on, let P = P + P,
and Z = Z; + Zs, and assume, without loss of gen-
erality, that Z; < Z,. Observe that there are only
|Z/2| possible values for Z;. If one solves the 2-
Non-Uniform Allocation Problem for a fixed value of
Z1, then min{Z1P1 + ZQPQ} = min{Pl(Zl — ZQ)} =
max{P; }. Therefore, the problem reduces to finding a
subset Gy of {di,dz,...,dny} which maximizes P;.

The basic idea of the algorithm to be proposed is
that, once the value of Z; is fixed, then the 2-Non-
Uniform Allocation Problem can be reduced to a par-
ticular Knapsack problem [9], which can be solved in
pseudo-polynomial time using dynamic programming.

Consider the 2-Non-Uniform Allocation Problem
with N items dy,ds,...,dn, where each d; is character-
ized by its demand probability p; and its length 2;, and
let Z; be fixed to B. Then, define a Knapsack prob-
lem of capacity B on the same N items dy,ds,...,dy,
where each item d; is characterized by a profit p; + Pz;
and a weight z;. The problem consists in finding a
subset S of {d1,ds,...,dn} subject to the constraint
Y d,es 2k < B s0 as to maximize the objective function
Ydpes(Pr + Pzr).

In the following it is shown that, by construction,
the constraint) 4,5 #k reaches B whenever possible,
and that in such a case the Knapsack solution S co-
incides with the optimal solution Gy for the 2-Non-
Uniform Allocation Problem with Z; = B. Indeed,
while maximizing the total profit), - o(pr+Pzk), the
quantity), g 2k is maximized earlier than 3, s Pk,

since each increment of zj, contributes by P = Efil Di.
Hence, if the capacity B is reachable, then the optimal
solution S will have »_, -gzr = B. In such a case,
the maximum P; = dres P is found, and hence the
optimal solutions S and G coincide.

To apply dynamic programming, consider an (N +
1) x |Z/2| matrix M, where the entry M, ; stores
the solution for the above Knapsack problem for S; =
{di,...,d;} and capacity j, with 1 < j < |Z/2]| and
0 < ¢ < N. Formally, M;; = maxzdkes(pk + Pzy)
such that } 7, ~gzr < j, where S C S;.

Starting from My ; = 0, for 1 < j < |Z/2], the
matrix M is filled row by row by assigning to M; 1 ; the
value max{Mi,j, Mi,jfz¢+1 +Pit1 +Pzi+1} if ;41 <4,
or Mi,j if Zit1 > 7.

Whenever the solution for the Knapsack problem
completely fills the capacity, i.e., the sum of the item
weights is exactly equal to j, the entry My ; gives

the optimal solution for the 2-Non-Uniform Allocation
Problem with Z; = j. Note that it is possible that
for certain values of j, with 1 < j < |Z/2], there is
no solution such that the total sum of weights is j. In
such cases, the results are discarded since they are not
significant.

As said earlier, to solve the 2-Non-Uniform Allo-
cation Problem, all the values of Z; between 1 and
|Z/2| have to be considered. The solution costs for
such problems can be derived from the last row of
M. For this purpose, the sum of the weights corre-
sponding to M; ; is kept in the entry F;; of an auxil-
iary matrix F'. Then, consider those entries My ; for
which Fn ; = j, and compute P, = My ; — jP. The
solution of the 2-Non-Uniform Allocation Problem is
maxlSjSLZ/ZJ {MN’]' —]P : FN,]‘ =]}, which can be
found scanning the last row of M and F. Once the
entry giving the optimal solution is found, it is easy to
list out the items which have been picked up by tracing
back the solution path.

Theorem 7. The 2-Non-Uniform Allocation Problem
can be solved in O(NZ) time.

Proof. The matrices M and F have (N + 1) x | Z/2]
entries. Each entry can be computed in constant
time. Moreover, the maximum on the last row
of M costs O(Z) time. Hence, the time complexity
of the dynamic programming algorithm is O(NZ). O

5 Conclusions

In this paper, the problem of data broadcasting
over multiple channels, with the objective of minimiz-
ing the average waiting time of the clients, was con-
sidered under the assumptions of skewed allocation
to multiple channels and flat scheduling per channel.
Both the uniform and non-uniform length problems
were solved to the optimum, proposing new algorithms
based on dynamic programming. For uniform lengths,
an O(NKlogN) time algorithm has been proposed,
which improves over the previously known O(N2K)
time algorithm by [14]. When K < 4, faster O(N)
time algorithms were exhibited. Moreover, for non-
uniform lengths, it has been shown that the problem is
NP-hard when K = 2, and strong N P-hard for arbi-
trary K. When K = 2, a pseudo-polynomial time algo-
rithm has been devised whose overall time is O(N Z),
where Z is the sum of the data lengths. For arbitrary
K, an algorithm was designed whose time comlexity is
exponential in the maximum data length z.

As a direction for further research, one can derive
lower bounds on the time complexity for the uniform
case. Moreover, one could try to design O(N) time

algorithms in the uniform case when the number K of
channels is a constant greater than 4.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broad-
cast disks: data management for asymetric communication
environments. In Proc. SIGMOD, May 1995.

[2] M.H. Ammar and J.W. Wong. On the optimality of cyclic
transmission in teletext systems. IEFEE Transactions on
Communications, 35(11):1159-1170, 1987.

[3] A. Bar-Noy, R. Bhatia, J.S. Naor, and B. Schieber. Min-
imizing service and operation costs of periodic scheduling.
In Proc. Ninth ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 11-20, 1998.

[4] A.A. Bertossi, M.C. Pinotti, S. Ramaprasad, R. Rizzi and
M.V.S. Shashanka. Optimal multi-channel data alloca-
tion with flat broadcast per channel. Technical Report
http://wwwl.isti.cor.it/ ~ pinotti/pubblicazioni.html.

[5] M.R. Garey and D.S. Johnson. Computers and Intractabil-
ity. W.H. Freeman and Company, San Francisco, 1979.

[6] T.Imielinski, S. Viswanathan, and B.R. Badrinath. Energy
efficient indexing on air. In Proc. SIGMOD, May 1994.

[7] C. Kenyon and N. Schabanel. The data broadcast problem
with non-uniform transmission time. In Proc. Tenth ACM-
SIAM Symp. on Discrete Algorithms (SODA), pages 547—
556, 1999.

[8] C. Kenyon, N. Schabanel, and N. Young. Polynomial time
approximation scheme for data broadcast. In Proc. ACM
Symp. on Theory of Computing (STOC), pages 659-666,
2000.

[9] S.Martello and P. Toth. Knapsack Problems. Wiley, Chich-
ester, 1990.

[10] W.C. Peng and M.S. Chen. Efficient channel allocation tree
generation for data broadcasting in a mobile computing en-
vironment. Wireless Networks, 9(2):117-129, 2003.

[11] K.A. Prabhakara, K.A. Hua, and J. Oh. Multi-level multi-
channel air cache designs for broadcasting in a mobile envi-
ronment. In Proc. Int’l Conf. Data Eng. (ICDE), 2000.

[12] N. Vaidya and S. Hameed. Log time algorithms for schedul-
ing single and multiple channel data broadcast. In Proc.
Third ACM-IEEE Conf. on Mobile Computing and Net-
working (MOBICOM), September 1997.

[13] J. von zur Gathen and J. Gerhard. Modern Computer Al-
gebra. Cambridge University Press, 2003.

[14] W.G. Yee, S. Navathe, E. Omiecinski, and C. Jermaine.
Efficient data allocation over multiple channels at broadcast
servers. IEEE Transactions on Computers, 51(10):1231-
1236, 2002.

